
MATHEMATICS OF COMPUTATION 
VOLUME 55, NUMBER 191 
JULY 1990, PAGES 299-311 

SIEVED PARTITION FUNCTIONS AND q-BINOMIAL COEFFICIENTS 

FRANK GARVAN AND DENNIS STANTON 

ABSTRACT. The q-binomial coefficient is a polynomial in q. Given an in- 
teger t and a residue class r modulo t, a sieved q-binomial coefficient is 
the sum of those terms whose exponents are congruent to r modu!o t. In 
this paper explicit polynomial identities in qt are given for sieved q-binomial 
coefficients. As a limiting case, generating functions for the sieved partition 
function are found as multidimensional theta functions. A striking corollary 
of this representation is the proof of Ramanujan's congruences mod 5, 7, and 
11 by exhibiting symmetry groups of orders 5, 7, and 11 of explicit quadratic 
forms. We also verify the Subbarao conjecture for t = 3, t = 5, and t = 10. 

1. INTRODUCTION 

The q-binomial coefficient 

(1.1) [ kN] (1 -q ) ... (1q k I a 

is a polynomial in q with integer coefficients. In this paper we shall consider 
the following families of polynomials formed from (1.1). Let t be a positive 
integer and consider the terms in ( 1.1 ) with residue class r modulo t: 

(1.2) Eati+rq 
i>O 

We refer to (1.2) as a sieved q-binomial coefficient. We give explicit formulas 
(Theorems 1 and 2 of ?2) for the sieved q-binomial coefficient as polynomials 
in qt. Some limiting cases (Theorems 3A, 3B and 3C of ?3) are expressions 
for sieved partition functions as multidimensional theta functions. In ?4 the 
symmetry groups of the quadratic form of the theta function are computed. 
Applications of these groups to congruences for the partition function are given 
in ?5. 
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To set the notation and explain the method, we shall now do the t = 2 case. 
For an integer N and complex numbers a and q, IqI < 1 , let 

N-1 

7 ~~~~~(a; q)N - ( -aqi). 
i=O 

We shall also allow N = o and note that the generating function for all parti- 
tions of i, p(i), is 

00 

p(i)q' = (q; q)O; 
= 

(q)o,1. 
i=O 

We next let t = 2 and r = 0, so that we want the even terms in the q- 
binomial coefficient. Recall the terminating q-binomial theorem 

(1.3) qk= q ] x 

Suppose N is even. Since 

(1.4) (-x; q)N + (-x; -q)N = (-x; q2)N/2{(-xq; q2)N/2 + (xq; q2)N/2}' 

(1.3) clearly implies 

N_ 
(k) 

N (q)(2)4m+2 

(1.5) [i;;] qm2 + [ (-q) =2 /2 

Prpsto 1. If N i 

q 

the 
2m.~q2k 

- m.q 
We obtain the following proposition. 

Proposition 1. If N is even, then 

, [N/2 ] [N/2 ] 4m2(k-(2m)_(k) 

Z NE2m+ N2[k2r q-i +2q 
Lm_ q2L-m q2 

Ea2iq2i for k =_ or 3 mod 4, 

= J ~~~~~2i+I 

_ 
a2,+lq for k 2 or 3 mod 4. 

The corresponding cases for the difference in ( 1.4) -are the following. 

Proposition 2. If N is even, then 

k1 N /12 N12 (2m+1)2 +2 (k-2m-l)_(fk) 

L2m +l 2 Lk -2m-1 2 q2 

E Ea2iq2 for k-_=2 or 3 mod 4, 

lE2i+lq2i+ Ifor k-O_ or I mod 4. 
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Propositions 1 and 2 are evaluations of special well-poised 403 'S in the the- 
ory of basic hypergeometric series. It is easy to give the relevant versions of 
Propositions 1 and 2 for N odd, but we do not do so here. 

2. SIEVED q-BINOMIAL COEFFICIENTS 

In this section we follow the outline of ? 1 for a general t, and find an ex- 
pression for the sieved q-binomial coefficients (1.2). We must replace the -q 
in (1.4) by a sum over all tth roots of unity, so let w = exp(27i/t). It is clear 
from (1.3) that 

t-1 N t-I rN_ i (k) k 
(2.1) k(-x;co'q)N= LjkJ (wiq)(2)Xk* 

i=0 k=O i=O L q 

If N is a multiple of t, it is easy to see that 

t-1~~~~~~~~~~~~~~k k 
t- - 

(2.2) 
(-; 

q)N = (-x; qt)Nt 
q-;q _ -x J7J(qxNo qk; qNt) 

i=_0 i=0 k=l 

k The coefficient of x in (2.2) yields 

i=o[)k ] qnE2 ni ] q' 
1=0 woq n,. tj 1 q p=Q 

where 
9= tL=(i- I)nj 

The result is the following theorem. Note that the residue class chosen from 
the q-binomial coefficient depends upon the value of (k) mod t. 

Theorem 1. Let N be a multiple of t, and (k)-t - r mod t, 1 < r < t. If a, 
is the coefficient of q' in the q-binomial coefficient [Efq, then 

tift [NIt] _, q(Z =i (ni)?m)_k) ati+rq ~ ~ n q], 
i-O nl, n, i-_ I q... lj 

where the summation parameters satisfy n1 + *. + n - k and n2 +2n3+ + 
(t - 1)nt = tm, for some integer m . 

The residue class r in Theorem 1 is determined by k and t. For a given 
N, k, and t, one would like a version for any residue class r. This can be 
done by inserting the appropriate roots of unity in the left side of (2.1). We 
give such a version for k 0 O mod 2t. 

Theorem 2. Let N be a multiple of t, k be a multiple of 2t, and 1 < r < t- 1. 
If ai is the coefficient of q' in the q-binomial coefficient [flq' then 

Eatiq = JJ [N /] ,qZ ()- 
i=O n l , . n, i=i i -ql1j 
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where the summation parameters satisfy nI + + nt = k and n2+ 2n3 + + 
(t - 1)nt = tm + r, for some integer m. 

3. SIEVED PARTITION FUNCTIONS 

Theorems 1 and 2 are polynomial identities which imply generating functions 
for sieved partition functions. In this section we take the appropriate limits to 
obtain these identities: Theorems 3A, 3B, and 3C. 

To see this, recall that the q-binomial coefficient (1.1) is the generating func- 
tion for partitions which lie inside a k x (N - k) rectangle. If N -* oo, we 
obtain all partitions with at most k parts. Next if k x-* o, we find all parti- 
tions. We will apply this sequence of limits to Theorems 1 and 2 for our results 
on the sieved partition function. 

First we take the t = 2 case to demonstrate the technique. Let k 0 mod 4 
in Proposition 1. If N -* oo, we find that the right side becomes 

k/2 8m2_4km+2m+k2/2-k/2 

m=0 (q2; q2)2m(q2; q2 )k-2M 

The exponent of q is a quadratic polynomial in m whose minimum occurs at 
m = k/4 - 1/8, and has value 2(m - k/4) + 8(m - k/4)2 . Thus replacing m 
by m + k/4 and letting k -* oo, we find 

I 0i ?? 2 

(3.1) Ep(2i)q = 1q q4m +m 

i=o 00(q) m=-oo 

For k _ 2 mod 4, Proposition 1 implies 
00 ?? 2 

(3.2) E p(2i + l)q'= I E q4m_3m 

i=o (q)OO m=-00 

We do the same sequence of steps for Theorems 1 and 2, which are (t- 1)-fold 
sums-the summation parameters being m, n3, ..., nt. The N -* oo limit of 
both theorems is easily computed by replacing the q-binomial coefficients by 
a single product in the denominator. For the k -* oo limit, one must again 
find the minimum value of the quadratic function of m, n3, ... , nt in the 
exponent of q, and then shift the domain of these summation parameters so 
that the minimum occurs at the origin. For Theorem 2, it can be shown that a 
minimum value occurs at m = (t - 1)k/2t, ni = k/t, i :? r+ 2, nr+2 =k/t- l, 
or at m = (t- 1)k/2t, ni = k/t, i :? r+ 1, nr+i = k/t- 1 . Explicitly computing 
the Taylor series of the exponent of q at these values, shifting the parameters, 
and taking the limit on k gives the following two theorems. 

Theorem 3A. Let 1 < r < t - 2. Then 
00 1 00 

5Ep(tn + t - r)q = E Q(m f3.n,)+LA(m,f3 .n,) 
n=O (q)0 m n3 ...fI n,=-00 
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where 
t t 

Q(m, n3, . ., n t2m2 + -(i2 3i + 3)n2 + j(3 - 2i)tmni 
i=3 i=3 

+ E (2ij - 3i - 3j + 5)ninj, 
3<i<j<t 

LA(m, n3, , nt) = E (1 - i)ni + (-r - 2)nr+2 + (1 + t)m. 

i=3, i#4r+2 

Theorem 3B. Let 2 < r < t - 1. Then 
00 

n 
00 

Q(m, n n,)+LB(m,Qn,n E p(tn + t - r)qn = q 3 3n,)+LB(m,n3.n) 
(q)t _ n=O oo m,n3,...n,=-oo 

where Q(m, n3, 
.3. 

, nt) is given in Theorem 3A, and 

LB(m, n 3,*- nt) = E (i - 2)nj + (r - 2)nr+l + (I - t)m. 
i=3, i#4r+ 1 

Note that for different r, the right sides of Theorems 3A (3B) differ only in 
the special linear term related to r. A linear change of variables shows that 
Theorems 3A and 3B are equivalent where they overlap, 2 < r < t - 2. 

The result which follows from Theorem 1 for r= 0 is 

Theorem 3C. We have 
00 00 0 

p(tn )q0 = 

0 
Q(m, n .n,)+LC(m, n3 .n,) 

n=O (q)00 m, n3,...,n,=-oo 

where Q(m, n3, .., nt) is given in Theorem 3A, and LC(m, n3, ..., nt) 
= m. 

We note that Kolberg [5] has also obtained representations for the generating 
functions for p(tn +r) . His representations are in terms of t x t determinants of 
theta-functions and are different from our results. For the cases t = 2, 3, 5, 7 
his determinants simplify to nice linear combinations of certain infinite prod- 
ucts. For example, Kolberg's [5, (3.1)] is 

oo( n (q3; q3)00 (q9; q9)2 (q4; q9)2 (q5; q9)2 

(3. 3) n= (q)00 

(3_3) -q (q9; q9)2 

(q)3 (q4; q9) 0(q5; q9)00 

We can find similar identities by diagonalizing the quadratic form Q and 
applying the Jacobi triple product identity [1, p. 21]. For example, let t = 3 in 
Theorem 3C: 

00 
n00 32+ 9S+M2 

>?3n? 1 q3s +m-9ms+9m2 
(p(3n)q = 3 ,E q 

n=O (q)o m,s=-oo 
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There are several ways to diagonalize this form. One is to note that Q(m +s, 2s) 
and Q(m + s, 2s + 1) are diagonal, and we find the following evaluation: 

Ep(3n)q n (q1; q ),z0(q; q )6 0 

n=O q0 
(3.4) x, (-q 7 ; q 18)0 (-ql l q l8) _q 3 ;q6 2 

2 2 18 16 18 6 6 2 + 2q (-q2 ql8) 0(_ql ql8) 0(_q q ),} 

There are also versions of (3.4) for 3n + 1 and 3n + 2. Equating the right 
sides of (3.3) and (3.4) gives rise to a surprising theta-function identity. 

4. SYMMETRY GROUPS 

It is natural to ask if Theorems 3A, 3B, or 3C imply congruences for the 
partition function p(n); for example the Ramanujan congruences for p(5n+4), 
p(7n + 5), and p(l 1 n +\6). In this section we find the symmetry groups for 
Theorems 3A-3C which will imply congruence theorems in ?5. 

How would' Ramanujan's congruences follow from Theorems 3A and 3B? 
We take as an example p(5n + 4) 0 mod 5. Consider Q(m, n3, n4, n5) + 
LA(m, n3, n4, n5) from Theorem 3A with t'= 5 and r = 1. Suppose there 
exists an affine transformation T: Z4 __ Z4, Tx = Mx + , such that 

(1) T5 = identity, 
(2) T has no fixed points in iZ4, 

(3) T preserves the form Q + LA. 

Then each orbit of T on the vectors (m, n3, n4, n5) must consist of five 
vectors. This clearly implies Ramanujan's congruence. 

Thus we 'should compute the symmetry group G of the form Q + LA and 
see if G contains a cycle of order five with property (2). For any of the forms in 
Theorems 3A, 3B, and 3C, we define G to be the set of affine transformations 
which preserve the form and the lattice Zt 1 . Table 1 lists these groups. We 
let Zn denote the cyclic group of order n, and Dn denote the dihedral group 
of order 2n . 

TABLE 1 

3n z2 4n z2 Sn+ ID4 6n z2 7n ID 
,3n,+ I: E 4n-+ I Z2 5n + I D4 6n + I Z2 7n + I IID 
73n+2 Z2 4n+2 Z2 5n+2 ID4 6n+2 Z2 7n+2 ID8 

4n + 3 Z2 5n + 3 ID6 6n +3 Z2 7n+3 ID6 
5n + 4 ID5 6n + 4 Z2 7n+4 ID6 

6n + 5 Z2 7n + 5 ID7 
7n+6 ID8 
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The groups in Table 1 were found in the following way. Let L be the linear 
form LA, LB, or LC for Theorems 3A, 3B, and 3C, respectively. Any element 
of G must permute the set of vectors {(m, n3, ... , nt)} on which Q + L is 
constant. Let the Q + L = 0 term correspond to a set V with p(r) such 
vectors, including the zero vector. (The five vectors for p(5n + 4) are given in 
?5.) If V contains at least t - 1 independent vectors, then any permutation 
of V induces at most one affine transformation of Zt-1 , which may or may 
not preserve Q + L. For small values of t the permutations can be checked by 
hand; large values of t require a computer. 

The following proposition is in agreement with Table 1. 

Proposition 3. For any r and t, the symmetry group of the forms Q + LA, 
Q + LB, or Q + LC contains Z2 . 

Proof. Let x denote the column vector (mi, n3,..., nt), and let L be a 
linear form on x. Let m(Q) be the symmetric matrix such that Qx = 

transpose(x)m(Q)x. It is easy to verify that Tx = Mx + T has order two, 
and preserves Q + L and the lattice Zt 1 if, and only if, 

(1) M2 = I 
(2) M and T have integral entries, 
(3) MT=--, 
(4) M preserves Q, QMx= Qx, 
(5) transpose(T)= (LM- L)(2m(Q))-I . 

We now give the (t - 1) x (t - 1) matrix M and the vector T. The matrix 
(2m(Q))<' can be found explicitly, so that the verifications of (1)-(5) are te- 
dious. M is independent of the residue class r. The only nonzero entries in 
rows 2 through t -3 are the -l's at (i, t - -i 

1 0 0 0 0 0 
O O 0. -1 0 0 

M= 0 0 -1 *- 0 0 0 

0 -1 0. 0 0 0 
-t 2 3 t-3 t-2 t-l 

t -1 -2 -(t - 4) -(t - 3) -(t - 2), 
The vector T does depend upon the residue class r and the form L. For 

r = 0 and L = LC, it is easy to see that T = 0. For Theorem 3B, T has at 
most three nonzero entries: 

(1) if 2 < r < t - 3 and 2r + I 7? t , the nonzero entries are Tr = Ttlr = 1 

and T,_ =-1, 
(2) if 2r + 1 = t, the nonzero entries are Tr = 2 and T, = -1, 
(3) if r = t - 2, the nonzero entries are Tt-2 

= 1 and T,_ = -1, 
(4) if r= t- 1, then T= 0. 

The final residue class is r = 1 in Theorem 3A. In this case the nonzero entries 
are T2=, T- =1 and T- =-2 . 5 
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5. CONGRUENCES 

The groups listed in ?4 can be used to derive congruence theorems. We do so 
in this section, proving the Ramanujan congruences and verifying the Subbarao 
conjecture for t = 3 and t = 5. The basic idea is that elements of G of order 
k should give us information about p(tn + r) mod k . This information is given 
in the next proposition. 

Proposition 4. Let g E G have order pa for some prime p . If FP is the fixed 
point set of g in Zt- 1 then 

00 
4L p(tn + r)q- = E Q(m, n3,...,n,)+LA(m, n3.t) mod p 
n=O oo (m, n3 ...,I n,)EFP 

For the first application of Proposition 4 and Table 1 we take p(Sn + 4) _ 0 
mod 5. Table 1 shows that the symmetry group for Sn + 4 contains an element 
g of order five. Thus we need FP(g) = 0. 

Here is the explicit construction of g = T. The five vectors which correspond 
to p(4) in Theorem 3A are (-1 , 1 , -1, -1), (0, 1, 1, -1), (0, 2, -1, 0), 
(0, 0, 0, 0), and (0, 1, 0, 0). We then take the unique affine transformation 
which cycles these five vectors in this order; it is Tx = Mx + , where the 
matrix M and the vector T are 

4 -1 -2 -3 0 

M '2 i -2 -2\S l '0) 
5 1 -2 -3 0 

It is easy to verify that T has no fixed points in Z4. 
The transformation T satisfies another nice property, 

(5.1) x+ Tx+ T2x+ T3x+ T4x = (-1, 5,-1 2). 

Clearly (5.1) implies that we could insert -Sm, n3, -5n4, or -5n5/2 on the 
right side of Theorem 3A, which directly proves Ramanujan's congruence. 

Corollary 1. We have 
00 5 00 00 

p(Sn + 4n = 5 E Q(m, n3,n4,n)+LA(m, n3,n4, 
Z p(5n +4)q m,fl 

n=O (q)oo m, n3, n4, nS00 

where Q and LA are given in Theorem 3A. 

The proofs for p ( 7n + 5) and p (11 n + 6) are similar. Note that corresponding 
dihedral groups contain a seven cycle and an eleven cycle. The corresponding 
affine transformations again have no fixed points. The analogues of the right side 
of (5.1) are (-2, 1, 7, -1, -2, -3) and (-5, 3,2, 1,0, 10, -2, -3, -4, 
- 5), so we obtain the next two corollaries. 
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Corollary 2. We have 
00 7 00 

Z p(7n + 5)q = 7 E n3qQ(m,n3.*3n7)+LA(m,n3,...,n7) 
n=0 (q)o0 m,n3 ...f ,n7=-00 

where Q and LA are given in Theorem 3A. 

Corollary 3. We have 

00n 11 00 
Q(m,n.nll)+LA(m,n 

E p(l In + 6)q = 11 n 3q 

n=0 (q0 m,n3,...,n,1=-0w 

where Q and LA are given in Theorem 3A. 

The next application is to consider the mod 2 behavior of p(tn + r). We 
take the element g of order two in the proof of Proposition 3, for which it 
can be shown that dimension (FP(g)) = Lt/2J . Thus, from Proposition 4, the 
generating function for p(tn + r) mod 2 is a Lt/2j-fold sum. 

For t = 3 the sets FP(g) are 

f {(2m, 3m): m E Z} for r = O, 

FP(g) = {(2m, 3m): m E } forr= 1, 

I {(m, 3m- 1): meZ} forr=2. 
An explicit computation of the form and the Jacobi triple product identity give 
the next proposition. 

Proposition 5. We have 
00 00 2 

p(3n+ 2)n _ 
9m _8m+1 I:p(3n +2)q = 

) q 
n=0 (q)00 m=-o 

18 18 18 
mod 2 

(q)00 
00 00 2 

E p(3 + l)n _ 
9m -4m I:p(3n + )q = 

3 q 
n=0 (q)00 m=-00 

= (q ; q )00(-q5;q )00(-q ; q )0 mod 2 
(q )3 

00(3n)qfl 1 00 2 n I 9m2+2m 
2 p(3na)q = E q 

n=O (q)O m=-oo 
18 18 7 18 1 8 

(q q )00(-q ; q )0(q"; ql8)00 mod 2. 
(q )3 

For t = 4 or t = 5 the set FP(g) is two-dimensional and cannot be eval- 
uated by the Jacobi triple product identity. However, there are other avail- 
able involutions in the appropriate dihedral group for t = 5. One may hope 
that for each residue class r, there is at least one involution g such that 
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dimension (FP(g)) = 1 . This is true for t = 5, r :$ 4, and we obtain product 
identities analogous to Proposition 5. For p(5n + 4), each of the five involu- 
tions has a two-dimensional fixed point set. However, the generating function 
for FP of one of these involutions is obviously diagonalizable to give the mod 2 
version of Ramanujan's generating function for p(5n + 4). 

We next use these identities and Proposition 5 to verify the following con- 
jecture for t = 3 and t = 5. A variant of this conjecture is given in [7, p. 854, 
?5]. Its history is given in ?6. 

Subbarao's Conjecture. For 0 < r < t - 1, p(tn + r) is infinitely often even, and 
infinitely often odd. 

Theorem 4. Subbarao's conjecture holds for t = 3 and t = 5. 

Before proving Theorem 4, we give a technical lemma for establishing Sub- 
barao's Conjecture. 

Lemma 1. Let 0 < r < t - 1, and let Q1 (n) (Q2(y)) be nonnegative quadratic 
functions in one (several) variable(s), with Q1 (n) strictly increasing. Suppose 

00 00 

E qQ(f(n) Z p(tn + r)qn n qQ2(Y) mod 2. 
n=O n=O y 

If there exists an integer s, an odd integer j, and an integer 0 < i < j - 1 such 
that 

(1) the equation Q2(Y) = Q, (jm + i) + s has no integral solutions y, 
(2) p(st + r)-- I mod 2, 

then Subbarao's Conjecture holds for r and t. 

Proof. If we find the coefficient of qm, we see that 
00 

Ep(t(M - Ql(n)) + r)I{y: Q2(Y) = M}l mod 2. 
n=O 

Next let M = Q1 (k) + s, and assume that p(tn + r) mod 2 is eventually the 
constant c. Then for large values of k, 

p(ts + r) + kcI{y: Q2(Y)=Q1(k)+s}l mod2. 

By (1), there is no solution y for the right side if k i mod j, so p(ts + r) + 
kc 0_ mod 2. If c = 0, this contradicts (2); if c = 1, then (2) implies k 
must be odd. However, we can take k to be even, by taking k = 2mj + i for 
i even, or taking k = 2mj + j + i for i odd. n 

Proof of Theorem 4. Here is an outline of our proof. We will use Propositions 4 
and 5 for the generating function identity assumed in Lemma 1. Then we must 
find an odd residue class which is missed by the quadratic function on the right 
side, and hit by the quadratic function on the left side. Hopefully this class will 
yield a viable choice for s in (2). 
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For the generating functions, Proposition 4 implies 
00 

(5.2) (q)? E p(tn + r)qn E q(Q+L)x mod 2, 
n=O xEFP(g) 

for an appropriate form L. Thus we need to eliminate (q)t to apply Lemma 
1. Jacobi's identity will do this for t = 3 and t = 5, 

00 00 

(q)3 =Ej](_-)n (2n + l)qn(n+1)/2 =qn(n+l)12 mod 2. 
n=O n=O 

For t = 5 we use 

(q)5 (q)6 /(q) (q2; q2)3 /(q) mod 2 
00 00 00 q 00/q0 mo2 

and the Euler Pentagonal Number Theorem [I] to find 
00 00 00 

(5.3) E q l) P(5n + r)qn E q(3+l)/2 (Q+L)xmod 2. 
n=O n=O n=-oo xEFP(g) 

For t= 3, (5.2) becomes 
00 00 

(5.4) ~E qfn(n+l)/2 Ep(3n + r)q n E q(Q+L)x mod 2, 
n=O n=O xEFP(g) 

while the t = 5 version of (5.2) is 
00 00 00 

(5.5) E q ) EP(5n + r)q q(3+)/2 E (Q+L)xmod 2. 
n=O n=O n=-oo xEFP(g) 

We now apply Lemma 1 with QI(n) = n(n + 1)/2 and Q2(x) = (Q + L)(x) 
for t = 3; and Q1(n) = n(n+ 1) and Q2(x, n) = n(3n+ 1)/2+(Q+L)(x) for 
t = 5. Here is the list of the appropriate values for s, j, and i, and the form 
Q + L in Lemma 1. 

(1) 3n: Q+L=9m2 +2m, s=O, i=3, j=5, 
(2) 3n+1: Q+L=9m2 -4m, s=O, i=l, j=5, 
(3) 3n+2: Q+L=9m2 -8m+l, s=l, i=4, j=5, 
(4) 5n: Q+L= 5m2 +2m, s=O, i=6, j=49, 
(5) Sn+l: Q+L=lOm2 +4m, s=l, i=3, j=49, 

IM2 (6) Sn+2: Q+L= lOm+8m+l,s=l, i=O, j=49, 
2 

(7) Sn+3: Q+L=5m +4m, s=2, i=4, j=49. 
The remaining case is p(Sn + 4), which has been done by Kolberg [6]. 0 

6. REMARKS 

Ramanujan [3, pp. 288-289] gave elementary proofs of the congruences for 
p(5n + 4) and p(7n + 5), while Winquist [8] gave such a proof for p( 1 n + 6). 
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Our proof is also elementary, and extends to mod 2 results. 
Unfortunately, we are unable to give a geometric interpretation for the ele- 

ments in the symmetry group G. It would be very interesting to have some geo- 
metric intuition for these elements, as opposed to our computational approach. 
For example, one could hope for a reasonable version of a fundamental domain 
for the five cycle in 5n + 4 which would give Ramanujan's generating func- 
tion. Such a fundamental domain, together with a bijection proving Theorems 
3A, 3B, and 3C, may be related to the crank of Andrews and Garvan [2]. For 
11 n + 6, the group G is again the dihedral group of order 22. One may also 
hope for an interpretation of Atkin's congruence theorem [1, p. 160]. 

The first proof of a result analogous to Subbarao's conjecture is due to Kol- 
berg [6], who proved the t = 1 case. Kolberg and Subbarao did the t = 2 case 
(see [7, p. 854], where Subbarao also mentions the t = 4 case). One can try to 
apply Lemma 1 to prove the Subbarao Conjecture for values of t besides 3 or 
5. For t = 4, where the fixed point set is two-dimensional, a slight variation of 
Lemma 1 gives the Subbarao Conjecture for t = 16. Recently, Hirschhorn and 
Subbarao [4] did this case. We could not find appropriate residue classes for the 
three-variable quadratic functions which occur for t = 6. However, for t = 7, 
the eight cycle for r = 0, 2, or 6 (see Table 1) has a one-dimensional fixed 
point set, and we find a one-variable quadratic function. Lemma 1, with mod- 
ulus 169, gives the Subbarao conjecture in these cases. In fact, since Q, (n) is 
always divisible by 8, we also get the t = 56 case, when r =_ 0, 2, or 6 mod 7. 
Similar reasoning shows that we can establish the t = 10 case from our t = 5 
theorem. Kolberg [6] has done the 7n + 5 case. No other cases are known. 

Proposition 6. Subbarao's conjecture holdsfor t = 10, and t = 56 and r 0, 2, 
or 6 mod 7. 

For t = 5 Kolberg gave the generating function for p(5n + r) as a sum 
of two infinite products [5, (4.17)-(4.21)]. The mod 2 versions for 5n + 1, 
5n + 2, and 5n + 4 agree with our results. Note that 3 divides the order of 
the groups for 5n + 2 and 5n + 3. We could find a mod 3 result which agrees 
with Kolberg's mod 3 versions for Sn + 2 and 5n + 3. 
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